Journal of Chromatography A, 746 (1996) 247-254 # Comparison of two azobenzene liquid crystal stationary phases in open tubular column gas chromatography F. Perez^a, P. Berdagué^a, J. Courtieu^a, J.P. Bayle^a, S. Boudah^b, M.H. Guermouche^{b,*} ^aLaboratoire de Chimie Structurale Organique, ICMO, Bt 410, 91405 Orsay-Cedex, France ^bLaboratoire de Chromatographie, Institut de Chimie, USTHB, B.P.32, El-Alia, Alger, Algérie Received 21 August 1995; revised 19 March 1996; accepted 21 March 1996 #### **Abstract** Comparative applications of two liquid crystals used as stationary phases in gas-liquid chromatography were investigated using different kinds of solutes. These liquid crystal molecules are: 4-(4-trans-pentylcyclohexanecarboxyloxy)-2'-methoxy-4'-(4-trans-pentylcyclohexanecarboxyloxy)-azobenzene (LC₁) and 4-(4-trans-pentylcyclohexanecarboxyloxy)-2'-butoxy-3'-methyl-(4-butoxybenzoyloxy)-azobenzene (LC₂). Their thermal properties were established with differential scanning calorimetry (DSC). The chromatographic separation abilities of LC₁ and LC₂ were studied using capillary glass columns. Interesting analytical performances were obtained in different fields: isomeric separation of alkanes, aromatics, polyaromatics, volatile aromatic compounds and cis- and trans-isomers. Comparison between LC₁ and LC₂ is presented. Elution properties of LC₁ and LC₂ showed some differences. LC₂ exhibited a higher separation efficiency especially for alkanes, light aromatics and polyaromatics, and the elution orders of some solutes were reversed compared with LC₁. Then, the two liquid crystals are efficient before and after solid–solid or solid–nematic transitions. Nevertheless, they present higher plate numbers in the nematic state. Nice separations of volatile aromatic compounds are obtained by the two liquid crystals. Keywords: Stationary phases, GC; Liquid crystals; Azobenzenes; Aromatic compounds; Alkanes; Volatile organic compounds ### 1. Introduction The use of liquid crystals as stationary phases in gas-liquid chromatography was first reported by Kelker [1,2] and Dewar et al. [3]. Liquid crystalline stationary phases are useful in separating close-boiling isomers which are very difficult or impossible to separate on classical stationary phases. These interesting properties are due to the rod-like shape and the ordered arrangement of their molecules within the mesophase. Liquid crystals were used with great success in the separation of naphthalenes [4] and derivatives [5], polycyclic aromatic hydrocarbons [6,7], isomers of benaxaprofen [8], steroid epimers [9], phenol ethers [10] and volatile aromatic compounds [11–17]. We presented the synthesis and the chromatographic applications of four new liquid crystals [18,19]. In this work, we analyse the gas-liquid chromatographic retention characteristics and the analytical performances of two new liquid crystals using a large variety of solutes. The formulas of the two ^{*}Corresponding author. Present address: Laboratoire de Chimie Structrale Organique, Institut de Chimie Moléculaire d'Orsay, Université Paris-Sud, Bâtiment 410, 91405 Orsay Cedex, France. Fig. 1. LC, and LC, formulas. Table 1 Transition temperature of liquid crystals LC₁ and LC₂ obtained by differential scanning calorimetry (DSC) measurements | Transition | \mathbf{LC}_{1} | LC_2 | |-------------------------------------|-------------------|---------| | Solid-solid $(K_1 \rightarrow K_2)$ | 89.5°C | 99.6°C | | Solid-nematic $(K, \rightarrow N)$ | 93.8°C | 110.3°C | | Nematic-liquid (N→I) | 274.5°C | 245.4°C | | | | | Fig. 2. Thermograms of LC₁ (a) and LC₂ (b). $1=K_1 \rightarrow K_2$ transition; $2=K_2 \rightarrow N$ transition; $3=N\rightarrow 1$ transition. following compounds are shown in Fig. 1. The liquid crystals are: 4-(4-trans-pentylcyclohexanecarboxyl-oxy)-2'-methoxy-4'-(4-trans-pentylcyclohexanecarboxyloxy)-azobenzene (LC₁) and <math>4-(4-trans-pentylcyclohexanecarboxyloxy)-2'-butoxy-3'-methyl-(4-butoxybenzoyloxy)-azobenzene (LC₂). They have a common part, A, but differ in part B, LC₂ bearing a lateral alkoxy chain and having one of the aliphatic rings replaced by an aromatic one. # 2. Experimental Details concerning the synthesis of the two liquid crystals are given in [21–26]. # 2.1. Reagents Alkanes, aromatics and other solutes were purchased from Chrompack (Netherlands) and volatile Table 2 Relative retention times of different compounds on LC, and LC, capillary columns | Compounds | Temperature (°C) | | Relative retention times | | |-----------------------------------|-------------------------------|-----------------|--------------------------|-----------------| | | LC, | LC ₂ | LC ₁ | LC ₂ | | Alkanes | | | | | | 5 n-Nonane | 50 | 60 | 1 | 1 | | 1 2,3,5-Trimethylhexane | 50 | 60 | 0.70 | 0.17 | | 2 2,2,4-Trimethylhexane | 50 | 60 | 0.70 | 0.33 | | 3 3-Methyloctane | 50 | 60 | 0.80 | 0.67 | | 4 2-Methyloctane | 50 | 60 | 0.85 | 0.75 | | 4 n-Tridecane | 90 | 110 | 1 | 1 | | 1 5-Methyldodecane | 90 | 110 | 0.73 | 0.71 | | 2 4-Methyldodecane | 90 | 110 | 0.78 | 0.74 | | 3 2-Methyldodecane | 90 | 110 | 0.81 | 0.79 | | 5 n-Octadecane | 180 | 170 | 1 | 1 | | 1 8-Methylheptadecane | 180 | 170 | 0.83 | 0.77 | | 2 4-Methylheptadecane | 180 | 170 | 0.86 | 0.83 | | 3 3-Methylheptadecane | 180 | 170 | 0.86 | 0.83 | | 4 2-Methylheptadecane | 180 | 170 | 0.88 | 0.84 | | 3 n-Eicosane | 210 | 220 | 1 | 1 | | 1 2,6,10,14-Tetramethylhexadecane | 210 | 220 | 0.62 | 0.66 | | 2 3-Methylnonadecane | 210 | 220 | 0.92 | 0.93 | | Aromatics | | | | | | 1 Toluene | 60° during 12 min | then 4°/min | 1 | 1 | | 2 Ethylbenzene | 60° during 12 min | then 4°/min | 1.92 | 1.89 | | 3 m-Xylene | 60° during 12 min | then 4°/min | 2.31 | 2.11 | | ↓ p-Xylene | 60° during 12 min | then 4°/min | 2.31 | 2.22 | | 5 o-Xylene | 60° during 12 min then 4°/min | | 2.77 | 2.67 | | 5 Isopropylbenzene | 60° during 12 min | | 3.08 | 2.89 | | 7 1,3,5-Trimethylbenzene | 60° during 12 min | | 4.31 | 3.56 | | 3 1,2,4-Trimethylbenzene | 60° during 12 min then 4°/min | | 5.08 | 3.17 | | 9 Paracymene | 60° during 12 min then 4°/min | | 5.15 | 3.83 | | 10 tertButylbenzene | 60° during 12 min | | 5.38 | 4.28 | | 11 Isobutylbenzene | 60° during 12 min | | 5.84 | 4.66 | | 12 1,3-Diethylbenzene | 60° during 12 min | | 6.46 | 5.00 | | Cis and trans-isomers | 1100 41 407 | | | | | 2 trans-Decalin | 110° then 4°/min | | 1 | 1 | | 1 cis-Decalin | 110° then 4°/min | | 0.89 | 0.90 | | 2 trans-Isoeugenol | 120° then 4°/min | | 1 | 1 | | l cis-Isoeugenol | 120° then 4°/min | | 0.73 | 0.74 | | Polyaromatics
I Naphthalene | 110° then 4°/min | | 1 | 1 | | 2 2-Methylnaphthalene | 110° then 4°min | | 1.45 | 1.41 | | 3 1-Methylnaphthalene | 110° then 4°/min | | 1.53 | 1.47 | | Acenaphtene | 110° then 4°/min | | 4.10 | 3.14 | | Fluorene | 110° then 4°/min | | 4.16 | 3.14 | | trans-Stilbene | 110° then 4°/min | | 4.43 | 3.43 | | Anthracene | 110° then 4°/min | | 4.63 | 3.43 | | 3 Phenanthrene | 110° then 4°/min | | 4.63 | 3.75 | | | 110 men 7 mm | | 4.03 | | (Continued on p. 250) Table 2 (continued) | Compounds | Temperature (°C) | Temperature (°C) | | Relative retention times | | |------------------------------|-----------------------|--------------------------------|------|--------------------------|--| | | LC, | LC ₂ | LC, | LC ₂ | | | Halogen compounds | | | | | | | 1 m-Dichlorobenzene | 100° during 10 min th | en 4°/min | 1 | 1 | | | 2 o-Dichlorobenzene | 100° during 10 min th | 100° during 10 min then 4°/min | | 1.19 | | | 3 1,3-Dichloropropanol 2 | 100° during 10 min th | 100° during 10 min then 4°/min | | 2.27 | | | 4 1-Bromo-3-chloropropanol 2 | 100° during 10 min th | 100° during 10 min then 4°/min | | 2.59 | | | 5 1,3-Dibromopropanol 2 | 100° during 10 min th | 100° during 10 min then 4°/min | | 3.08 | | | Volatile aromatic compounds | | | | | | | 1 α-Pinene | 120° then 4°/min | 110° then 4°/min | 0.32 | 0.36 | | | 2 β-Pinene | 120° then 4°/min | 110° then 4°/min | 0.42 | 0.42 | | | 3 Eucalyptol | 120° then 4°/min | 110° then 4°/min | 0.53 | 0.48 | | | 4 Limonene | 120° then 4°/min | 110° then 4°/min | 0.53 | 0.48 | | | 5 Camphor | 120° then 4°/min | 110° then 4°/min | 0.68 | 0.54 | | | 6 Linalol | 120° then 4°/min | 110° then 4°/min | 1 | 1 | | | 7 Linalyl acetate | 120° then 4°/min | 110° then 4°/min | 1.05 | 1.40 | | | 8 Nerol | 120° then 4°/min | 110° then 4°/min | 1.18 | 1.44 | | | 9 Eugenol | 120° then 4°/min | 110° then 4°/min | 1.21 | 1.52 | | | 10 Geranyle acetate | 120° then 4°/min | 110° then 4°/min | 1.34 | 1.80 | | | 11 α-Cedren | 120° then 4°/min | 110° then 4°/min | 1.45 | 1.65 | | | 12 cis-Isoeugenol | 120° then 4°/min | 110° then 4°/min | 1.47 | 1.88 | | | 13 Geraniol | 120° then 4°/min | 110° then 4°/min | 1.50 | 1.64 | | | 14 β-Cedrene | 120° then 4°/min | 110° then 4°/min | 1.55 | 1.72 | | | 15 trans-Isoeugenol | 120° then 4°/min | 110° then 4°/min | 2.00 | 2.34 | | | 16 Estragole | 120° then 4°/min | 110° then 4°/min | 2.34 | 2.08 | | | 17 Thymol | 120° then 4°/min | 110° then 4°/min | 2.39 | 2.28 | | | 18 Carvacrol | 120° then 4°/min | 110° then 4°/min | 2.53 | 2.40 | | | 19 Anethole | 120° then 4°/min | 110° then 4°/min | 2.63 | 2.48 | | The numbers given before each product refer to their elution order in the LC, phase as shown for some of them in Figs. 3-6 aromatic compounds from Meyreau-Boiveau (France). dichloromethane. The column was then conditioned overnight at 10°C above the nematic-isotropic transition temperature. # 2.2. Apparatus Thermal analysis measurements were made using a GA 44 Mettler DSC apparatus. A HP 5730A gas chromatograph equiped with dual flame ionization detector and split/splitless injector was used with a single-channel HP 7130A recorder. High-purity nitrogen was used as carrier gas. Each glass capillary column was made of borosilicate glass (35 m×0.25 mm I.D.). After etching according to the method of Rijks et al. [20], the capillary was deactivated with Carbowax 20M and coated dynamically with a solution of 10% of the liquid crystals dissolved in ## 3. Results and discussion # 3.1. Thermal characteristics of LC_1 and LC_2 The different phase transitions of LC_1 and LC_2 compounds were determined by DSC and their corresponding temperatures are listed in Table 1. The two liquid crystals exhibit a solid-solid phase transition $(K_1 \rightarrow K_2)$ and a nematic phase within a large temperature range. Thermograms of the two liquid crystals are shown in Fig. 2. Fig. 3. Typical analytical performances of LC_1 and LC_2 . Separation of positional isomers of nonanes in the solid state K_1 using LC_1 ; column temperature: $50^{\circ}C$ (3a) and LC_2 ; column temperature: $60^{\circ}C$ (3b). 1: 2,3,5-trimethylhexane. 2: 2,2,4-trimethylhexane. 3: 3-methyloctane. 4: 2-methyloctane. 5: n-nonane. Polyaromatics separation in the nematic phase (N) using LC_1 (3c) and LC_2 (3d); column temperature: programmed from 110° at $4^{\circ}C/min$. 1: naphthalene. 2: 2-methylnaphthalene. 3: 1-methylnaphthalene. 4: acenaphtene. 5: fluorene. 6: trans-stilbene. 7: anthracene. 8: phenanthrene. # 3.2. Comparative analytical applications of the two liquid crystals In our opinion, parts A and B in the structures (Fig. 1a and b) explain the differences and the similarities between LC_1 and LC_2 . In Table 2, relative retention times were preferred to retention times or more complex presentations [17]. Briefly, the characteristics of LC_1 and LC_2 are listed below. #### 3.3. Differences LC₂ shows a higher separation ability with alkanes, aromatics and polyaromatics, probably due to Fig. 4. Analytical performances in the solid state K_2 of LC_1 (a) (column temperature 90°C) and LC_2 (b) (column temperature 105°C). 1: cis-2-hexen-1-ol. 2: cis-3-hexen-1-ol. 3: 5-methyldodecane. 4: 4-methyldodecane. 5: 2-methyldodecane. 6: n-tridecane. the last aromatic ring and the lateral alkoxy chain in part B (see Fig. 1a and b). Fig. 3a and b indicate that 2,3,5- and 2,2,4-trimethylhexane are well separated only on LC₂. Another difference between LC_1 and LC_2 is shown in Fig. 3c and d. Phenanthrene and anthracene which appeared in one peak on LC_1 are separated into two peaks on LC_2 . In Fig. 5a and b and Table 2, we see that LC_2 succeeded in separating xylene isomers while LC_1 is not able to differentiate between m- and p-xylene. Some other minor differences are observed in the elution orders of the following solutes: (i) 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene are eluted in this order on LC_1 and in the reverse order on LC_2 ; (ii) geraniol is eluted before geranyl acetate on LC_2 and after it on LC_1 . Other differences in elution order can be seen in Fig. 6a and b. Fig. 5. Separations of aromatic hydrocarbons on LC₁ (5a) and LC₂ (5b); column temperature: isotherm at 60°C during 12 min then 4°C/min, 1: toluene, 2: ethylbenzene, 3: m-xylene, 4: p-xylene, 5: o-xylene, 6: isopropylbenzene, 7: 1,3,5-trimethylbenzene, 8: 1,2,4-trimethylbenzene, 9: paracymene, 10: tert-iobutylbenzene, 11: isobutylbenzene, 12: 1,3-diethylbenzene. #### 3.4. Similarities Plates number of the capillary columns packed with the two liquid crystals are comparable, largest values are found in the nematic phase (Table 3). The two liquid crystals exhibit a satisfactory Fig. 6. Separation of volatile aromatic compounds. 6a: LC₁. Column temperature: programmed from 120°C at 4°C/min. 6b: LC₂. Column temperature: programmed from 110°C at 4°C/min. 1: α -pinene. 2: β -pinene. 3: eucalyptol. 4: limonene. 5: camphor. 6: linalol. 7: linalyl acetate. 8: nerol. 9: eugenol. 10: geranyle acetate. 11: α -cedrene. 12: cis-isoeugenol. 13: geraniol. 14: β -cedrene. 15: trans-isoeugenol. 16: estragole. 17: thymol. 18: carvacrol. 19: anethole. separation ability below solid-solid or solid-nematic temperature transition. For example, nonanes are well separated at 50° C on LC₁ and at 60° C on LC₂ Table 3 Plates number of LC_1 and LC_2 in the solid, nematic and isotropic phases | Liquid crystal | State | Solute | Retention temperature (°C) | Plate number/m | |--|---------|----------------|----------------------------|----------------| | LC, Solid Nematic Liquid | Solid | n-Nonane | 60 | 2620 | | | Nematic | n-Tridecane | 120 | 3100 | | | Liquid | trans-Stilbene | 280 | 2510 | | LC ₂ Solid
Nematic
Liquid | Solid | n-Nonane | 60 | 2815 | | | Nematic | n-Tridecane | 120 | 3200 | | | Liquid | trans-Stilbene | 250 | 2620 | (Fig. 3a and b). Light aromatics are well resolved at 60° C on both LC_1 and LC_2 (Fig. 5a and b). Solid-phase K_2 also allows the separation of tridecane isomers, *cis*-2-hexen-1-ol and *cis*-3-hexen-1-ol using LC_1 (Fig. 4a) or LC_2 (Fig. 4b). Because of the large temperature range of their nematic phase, LC₁ and LC₂ separate a large variety of alkanes having from 9 to 20 carbon atoms (Table 2). Chromatographic behaviour of the two liquid crystals are comparable in different fields, particularly in the separation of volatile aromatic isomers (Table 2, Fig. 6) such as thymol-carvacrol, estragole-anethole, eugenol-isoeugenols, α - and β -pinene and α - and β -cedrene. It is known that estragole and anethole are eluted before thymol and carvacrol on polyethylene glycol [27]. With the two liquid crystals (Fig. 6, Table 2), elution order is estragole, thymol, carvacrol and finally anethole. It seems that the double bond conjugated with the aromatic ring present in anethole is preferentially retained over the aromatic ring with protruding polar oxygen present in thymol [28]. The elution order is more complex when the two phenomena (conjugated double bonds and protruding oxygen) are present, for example *trans*-isoeugenol is eluted before thymol and carvacrol on LC₁ and in-between on LC₂. But *trans*-isoeugenol is always eluted before anethole (Table 2, Fig. 6a and b). Interesting separations are obtained for *cis-trans* isomers. In Table 2, we report the relative retention times of *cis-* and *trans-*decalin and those of *cis-* and *trans-*isoeugenol. The two columns elute *trans-*before *cis-*isomers. #### 4. Conclusion The separation properties of the two liquid crystals can be summarized as: - LC₁ and LC₂ are convenient stationary phases in order to separate different kinds of solutes such as alkanes, aromatics, polyaromatics isomers, volatile aromatic compounds and halogen compounds. - 2. LC₁ and LC₂ exhibit interesting separation properties in the solid state as well as in the nematic state. Because they contain the same part A in their structures, LC₁ and LC₂ present similarities in the separation of (i) positional isomers of alkanes, aromatics, polyaromatics and volatile aromatic compounds, (ii) some geometrical isomers. The variation in part B of their structures explains the differences in the separation abilities of LC_1 and LC_2 . It appears that the introduction of an aromatic ring and a lateral alkoxy chain in part B, leads to better analytical performances for LC_2 . Indeed LC_2 achieved the separation of xylenes, positional nonane isomers, anthracene and phenanthrene where LC_1 did not. #### References - [1] H. Kelker, Ber. Bunsenger Phys. Chem., 67 (1963) 698. - [2] H. Kelker, Z. Anal. Chem., 198 (1963) 254. - [3] M.J.S. Dewar and J.P. Shröeder, J. Am. Chem. Soc., 86 (1964) 5235. - [4] S. Wasik and S. Chesler, J. Chromatogr., 122 (1976) 451. - [5] B.B. Ghatge and N.V. Bhalerao, J. Chromatogr., 549 (1991) 423. - [6] M. Nishioka, B.A. Jones, B.J. Tarbet, J.S. Bradshaw and M.C. Lee, J. Chromatogr., 357 (1986) 76. - [7] G.M. Janini, K. Johnston and W.L. Zielinski Jr., Anal. Chem., 47 (1975) 670. - [8] M. Hall and D.N.B. Mallen, J. Chromatogr., 118 (1976) 268. - [9] W.L. Zielinski Jr., K. Johnston and G.M. Muschik, Anal. Chem., 48 (1976) 907. - [10] L.E. Cook and R.C. Spangeld, Anal. Chem., 46 (1974) 122. - [11] T.J. Betts, J. Chromatogr., 587 (1991) 343. - [12] T.J. Betts, J. Chromatogr., 626 (1992) 294. - [13] T.J. Betts, J. Chromatogr., 641 (1993) 189. - [14] T.J. Betts, J. Chromatogr., 605 (1992) 276. - [15] T.J. Betts, J. Chromatogr., 588 (1991) 231. - [16] T.J. Betts, J. Chromatogr., 513 (1990) 311. - [17] T.J. Betts, C.M. Moir and A.I. Tassone, J. Chromatogr., 547 (1991) 335. - [18] P. Berdagué, F. Perez, J.P. Bayle, J. Courtieu, O. Abdelhadi, S. Guermouche and M.H. Guermouche, Chromatographia, 40 9/10 (1995) 581. - [19] P. Berdagué, F. Perez, J.P. Bayle, J. Courtieu, O. Abdelhadi, S. Guermouche and M.H. Guermouche, J. High Resolut. Chromatogr., 18 5 (1995) 304. - [20] J.J. Franken, G.A.F.M. Rutten and J.A. Riijks, J. Chromatogr., 126 (1976) 117. - [21] J.P. Bayle, E. Bui, F. Perez and J. Courtieu, Bull. Soc. Chim. Fr., 4 (1989) 534. - [22] E. Bui, J.P. Bayle, F. Perez and J. Courtieu, Bull. Soc. Chim. Fr., 130 (1991) 61. - [23] P. Berdagué, F. Perez, J.P. Bayle and J. Courtieu, Bull. Soc. Chim. Fr., 130 (1991) 475. - [24] A. Hassner and V. Alexanian, Tetrahedron Lett., 46 (1978) 4475. - [25] P. Berdagué, F. Perez, P. Judenstein and J.P. Bayle, New J. Chem., 19 (1995) 293. - [26] A. Nose and T. Kudot, Chem. Pharm. Bull., 29 (1981) 1159. - [27] P.N. Breckler and T.J. Betts, J. Chromatogr., 53 (1970) 163. - [28] T.J. Betts, J. Chromatogr., 588 (1991) 231.